

01-02
Introduction

03-05
Repackaging

06-09
Hooking frameworks

10-12
Rooting

13-14
Methodology

Introduction

Welcome to our Q1 App Threat Report, Promon's quarterly analysis of
current topics in mobile application security produced by our
Security Research Team. This report reviews mobile gaming security,
exploring how the top games by revenue protect themselves against
hooking frameworks, repackaging, and rooted devices.

Mobile game downloads skyrocketed during the pandemic. While
global consumer spending declined in 2022, the worldwide revenue
generated still accounted for over 90B last year, according to a
recent Newzoo report, with over 1.7B users playing downloaded
games. In another report from Beyond Identity, 67% of mobile
gamers reported that they had been hacked while playing at least
once, losing $359 on average.

Game developers spend billions on developing their proprietary IP
and want to protect that investment to protect their reputation and
defend their revenue stream.

Our Q1 report explores the overall security level for mobile games. To
assess that level, we checked more than 350 Android games to see
how they fared against our repackaging attacks, deployment of
hooking frameworks, and how they handled the detection of a rooted
device. Initial results showed that most apps were vulnerable to our
attacks.

We hope our findings help companies improve their security posture
to protect their revenue, brand and IP, and users from harm.

Executive summary

Promon tested 357 of the world’s highest revenue-generating mobile
games for Android. These games represent more than $10.5 Billion in
annual revenue according to SensorTower data.

We subjected each game to four tests: repackaging, hooking via Frida, hooking via
LSPosed, and rooting detection test. 289 (81%) offered no defenses against
repackaging or hooking and did not detect running on a rooted device.

Fifty-six apps (15.7%) deployed some form of repackaging detection, making it the
most "defended against" attack vector.

To evaluate defense against hooking frameworks, we attached both Frida and
LSPosed to apps. Thirty apps (8.4%) could defend against Frida, while only 16
(4.5%) detected LSPosed.

Only one app could detect the presence of a rooted device when we used all
appropriate hiding methods, making it the security area of the least concern to
game developers.

We also grouped the apps by revenue to see if apps with more significant revenue
employed more defensive technologies. 33% of apps generating more than $100
million in annual revenue (source: SensorTower) prevented repackaging, more than
any other revenue split, but none were able to detect LSPosed, the only split where
no app detected the hooking framework.

Interestingly, apps generating less than $5 million per year had perhaps the most
robust overall security posture. 16% could detect Frida (highest among all the
revenue splits), 5% could detect LSPosed (tied for 2nd), 21% could prevent
repackaging (tied for 2nd).

Overall, our automated, relatively straightforward attacks

worked well across all the apps tested, underscoring a pressing
need for all apps to improve their security level.

02

Repackaging

What is a repackaging
attack?

Repackaging attacks modify or
extend the code of an existing
application and then package it into
a new application.

While this report focuses on
Android, attackers can also
repackage iOS apps. Apple cites the
risks of repackaging in its decision
not to allow sideloading iOS apps.
However, app developers may still
find their apps on jailbroken
iPhones, and sideloading is possible
using, for example, enterprise
distribution solutions. In some
cases, applications can be
repackaged, rebranded, and re-
released to the Apple App Store,
making sideloading unnecessary
and negating attempts to downplay
the risk of repackaging on iOS.

What are the risks of
repackaging?

Malicious code injection carries
significant risks for both app owners
and users. Repackaging makes it
possible to start and run or use a
fraudulent version of an app after
repackaging the original app.

It is possible to manipulate the app at
rest, changing implemented code,
checks, and security. An attacker
could then provide an alternative app
in the Google Play Store or "drive-by-
download."

Malicious actors could add foreign
code and features, like malware, or
remove existing security flags. The
repackaged original app would then,
at startup, not notice changes.

Repackaging attacks can also allow
other entities to leverage a
company's proprietary IP or open a
company up to brand and
reputational damage.

03

Do app stores protect against repackaged apps?

Unlike major app stores, third-party app stores may not have such stringent
policies. Also, attackers can use various methods, from ads to spam, to trick users
into downloading a repackaged app. Pokemon Go in 2016, and Fortnite in 2018
were examples of games that were exposed to repackaging, and other apps like
WhatsApp have also been successfully repackaged.

The new EU Digital Markets Act, effective in May 2023, will impact the mobile
gaming market. This legislation aims to prevent large tech companies from
"gatekeeping" the digital marketplace and instead encourages competition by
enabling smaller players to enter the market and allowing third-party app stores
and payment processors to operate outside of the Apple App Store and Google
Play. For the mobile gaming industry, large publishers may have their own app
stores and charge their users directly outside of the two traditional app stores. In
contrast, smaller developers will have to depend on established app stores.
However, this may lead to more fragmentation, which could increase security risks
for users and developers due to hackers and fraudsters circulating repackaged or
rooted apps in third-party app stores.

G How to protect your app

Robust repackaging detection and protection on multiple layers are
required to mitigate this attack vector. The protection technology
needs to understand how operating systems verify packages, how
those are signed, and how they can be verified as original by the app
publisher and not manipulated at rest.

Android and iOS developers can add these features to their apps:
1.Independent verification of the app's signature. O.S. verification
will not work if it has been disabled (e.g., on a Jailbroken phone) or
re-signed with a different but valid distributor key.
2.Verification of app resources before use.
3.Code integrity checks to detect tampering and binary
modification.

04

‘4

Results

L) I
~ -

Repackaging was the most-prevented
attack overall, yet Promon’s tests
successfully repackaged almost 85%
of all the apps tested (301 apps in
total) — meaning only 15% of apps
successfully prevented it.

Our analysis also indicated that these
apps could not mitigate or defend
against such attacks and likely could

not detect code injection and
repackaging attacks.

.

Percentage of repackaged apps by annual revenue

>$100M

ssow-ssosov [N
s2sv-s0.0ov [N
$15M-$24.99M -
$10M-$14.99M _
ssv-sosov [N
llllllllll
0

<$5M

10 20 30 40

33% of apps with $100M or more in annual revenue prevented
repackaging. Interestingly, apps with under $5 million in annual revenue.

Hooking frameworks

What are hooking frameworks?

Hooking frameworks are tools used to intercept, modify, and redirect function calls
and other events in a running mobile application. These frameworks allow
developers and security researchers to monitor and analyze an application's
behavior in real-time, which can help identify vulnerabilities and detect malicious
activity.

Some popular hooking frameworks in mobile app security include Frida and
LSPosed (see below for more on both).

While these hooking frameworks can be used for legitimate purposes, such as
testing the security of an application or debugging a problem, they can also be
used for malicious purposes, such as stealing sensitive information, understanding
the inner workings of the application, manipulating the app during runtime, faking
system calls and more. Attaching these hooking frameworks to an app is an
essential step in developing and executing an attack against an app.

Frida

Frida is a dynamic instrumentation tool used for reverse engineering, debugging,
and analyzing the behavior of applications on various platforms, including Android,
i0S, Windows, and macOS.

Frida allows developers and security researchers to inject their own custom code
into an application at runtime, which gives them unprecedented access to the
application's behavior and underlying system. With Frida, you can monitor and
intercept function calls, method invocations, network traffic, and system events,
among other things.

Frida consists of two main components: a runtime library that is either injected into
the application on disk via repackaging or injected into the application during
runtime via code injection, and a Python-based command-line tool that you can use
to communicate with the library and perform various tasks, such as injecting code,
debugging, and tracing.

One of the most significant advantages of Frida is its ability to bypass common
anti-debugging and anti-tampering measures that developers use to protect their
applications from reverse engineering and hacking.

Frida does this by injecting its own code into the target process, which makes it
difficult for the application to detect and prevent tampering.

Frida is an incredibly versatile tool that can be used for a variety of tasks, from
analyzing malware to testing the security of your applications. It's a popular tool in
the security research community used by both security research and malicious
hackers.

LSPosed

LSPosed is a hooking framework that allows users to customize the behavior of
their Android device. It is based on the Xposed Framework and requires root access
to function. LSPosed offers a user-friendly interface for managing modules, which
are packages of code that can be loaded into the framework to alter the behavior
of the Android system and individual apps installed on the device.

While LSPosed and Frida have similar uses, Frida provides an extensive set of
reverse engineering tools while LSPosed is more focused on providing the user the
possibility to modify the Java code of apps during runtime by writing modules.

Why should developers protect against hooking frameworks?

Mobile game developers should protect against hooking frameworks for a few key
reasons:
1.Cheating: Players can use hooking frameworks to cheat in games by modifying
the game's code or data to gain an unfair advantage over other players. This
can lead to an imbalance in the game's economy and frustrate legitimate
players, leading to a decline in the game's popularity and erosion of its revenue
base.
2.Revenue loss: Game developers can also suffer revenue loss from cheating
because players who cheat are less likely to spend money on in-game
purchases if they can obtain the same benefits through cheating.
3.Security risks: Hooking frameworks can also be used by malicious actors to
reverse engineer and extract sensitive information from the game, such as
proprietary game code, user data, or cryptographic keys. This can lead to IP
theft, data breaches, and other security risks.
4.Reputation damage: If a game is widely known to be vulnerable to cheating or
other security risks, it can damage the game developer's reputation and lead to
lost trust among players.

07

Results

HOOKING FRAMEWORKS

To test the security level against
hooking frameworks, we attempted to
hook apps using popular attack tools
Frida and LSPosed.

Overall, 34 apps contained some
hooking framework protection (9.5%).
30 of the 357 apps detected Frida
(8.4%), while only 16 (4.5%) were able
to detect LSPosed. Only 12 of the 357
apps tested could detect both Frida
and LSPosed (3.4%).

Frida

LSPosed

08

Hooking framework results by annual revenue (in %)

a Frida LSPosed

>$100M
$50M-$99.99M
$25M-$49.99M

.
]
I
$15M-$24.99M
]
$10M-$14.99M
.
|

$5M-$9.99M

<$5M
0 5 10 15 20

13% of apps with $100M or more in annual revenue could detect Frida,
although none could detect LSposed. Curiously, apps with between $50M
and $99M in annual revenue had no protection from Frida, and only one
app detected LSposed. Apps with lower annual revenue fared better; 16%
of apps with less than $5M in annual revenue could detect Frida, while
11% of apps with between $5M and $9.99M could. LSposed was detected
by 5% of apps in both buckets.

G How to protect your app

To protect against hooking frameworks, mobile game developers can implement
various security measures, such as runtime protection and obfuscation techniques,
to make it harder for hackers to reverse engineer the game's code. They can use
server-side validation to detect and prevent cheating and integrate app shielding
technologies to adopt a comprehensive app security posture. By implementing
these measures, game developers can help ensure that their game remains fair,
secure, and enjoyable for all players.

09

Rooting

What is rooting/jailbreaking?

Rooting and jailbreaking are privilege escalation methods used to bypass the
security restrictions placed on mobile devices, allowing users to gain root or
administrative access to the device's operating system. In the context of mobile
apps, rooting and jailbreaking can allow users to access and modify the behavior of
apps in ways that are not intended by the app developers or the operating system.

Rooting refers to the process of gaining administrative access to an Android device.

By rooting an Android device, users can access system files and memory and
modify the behavior of the operating system and individual apps. Rooting can be
done by exploiting security vulnerabilities in the device's firmware or by using
specialized software tools.

Jailbreaking refers to the process of gaining administrative access to an iOS device.

By jailbreaking an iOS device, users can install and run applications that are not
approved by Apple, access system files, and modify the behavior of the operating
system and individual apps. Jailbreaking can be accomplished by exploiting
security vulnerabilities in the iOS firmware and by using specialized software tools.

While rooting and jailbreaking can provide users with more control over their
devices, they also introduce security risks and can compromise the stability and
performance of the device and apps. Rooted or jailbroken devices are also more
vulnerable to malware and other security threats, as security features provided by
the operating system may be disabled or circumvented.

10

Is this a problem for gaming?

The question of whether mobile games on Android should detect running on a
rooted device is complicated. On one hand, root access can be used to cheat in
games, giving players an unfair advantage over others. Root detection can help
prevent this by blocking access to the game for rooted devices.

On the other hand, many legitimate users rely on root access to perform essential
tasks on their devices, such as customizing the OS or installing certain apps.
Additionally, due to the diversity of the Android ecosystem, there are rare instances
of devices that come pre-rooted from the factory. Root detection can prevent
these users from playing the game, even if they have no intention of cheating.

For gaming, a potential solution could be to detect root presence, report it to a
central server, and, afterward, restrict access to their account if any suspicious
behaviors are detected from this user.

With Android being open source and highly customizable, it is also possible to
release versions of the operating system that are impossible for any solution to
detect whether are rooted or not. Because of this, one should never rely on root
detection as the only security feature, but rather assume that the system is rooted,
and secure the application with other security measures.

About Magisk

Our report used Magisk, a popular rooting tool for Android devices that allows users
to gain root access to their devices.

While Magisk itself may not look like much, it opens the door to a vast ecosystem of
modules. These modules, with root privileges, can afterward do (almost) anything
on the device. One of these modules is LSPosed, which this report also explores.

Magisk also includes a feature called Zygisk, which allows the user to modify the
Zygote process (the process that every Android app forks from). This will enable
Magisk to control the app before any of the app's code is executed. Magisk also
has a DenyList, a list of apps that will not gain root access on the device. This is
used to hide the Magisk presence from the app as all the Magisk files are stored in
directories not accessible without root permissions.

1

Res

ROOT DETECTION

Only one app (<1%) could detect the
presence of a rooted device, and it
was within the third revenue split
($25M-$49.99M).

G How to protect your app

To protect against rooted devices, mobile game developers can
check for the presence of root or jailbreak detection frameworks.
These tools search for 'markers' in the OS, such as files that are
accessed when they usually would not be able to, reading/writing
memory that should have access, and searching for apps that need
rooted capabilities, for example. Open-source frameworks are
available that can do trivial root and jailbreak detection. However,
these are often trivially bypassed.

12

Methodology

Selection

Overall, Promon analyzed 357 unique Android apps. Apps tested were determined
by finding the games with the most revenue over the past year on the Google Play
Store, according to SensorTower.

Testing environment and process

Promon created a script to install and run the unmodified app to ensure it runs in
the test environment. The application was run for up to 60 seconds, checking that it
had not terminated. If the app did not terminate, the app was marked as valid for
future testing. If the app crashed during this test, we assumed that the app or the
test setup had a problem, and the app was excluded from future tests.

After passing the initial test, the apps underwent testing through an attack testing
framework, which involves steps such as:

1.Initial app modification if needed (repackaging would go here)

2.App installation

3.Environment initialization (tasks like Magisk DenyList insertion would go here)

4.App launch

5.Continuous app monitoring for up to 60s with screenshot taking and log
collecting

6.Screenshots are compared to detect potential app freeze

7.Logs are analyzed to determine test results

Afterward, all app screenshots that did not crash during these tests were checked
manually for popups that would mention any kind of "hack detection."

There could be apps that launch successfully, do not freeze, do not show any "hack
detected" popups but have detected the "attack," and do not (immediately) do
something about it. This is challenging to determine but also far from ideal from a
security standpoint. If the app knows that it is being attacked, it should not trust
that the functionality it uses to prevent the app from running correctly has not been

manipulated.

13

Process: Repackaging

Repackaging was done by
decompiling the Java code of the app,
inserting simple logging into it, then
recompile and sign the app.

Any issues encountered during
application modification resulted in the
app being classified as not completing
the test. Most often, the reason was
the presence of certain features in
these apps that were not supported
by the decompilation/recompilation
tools being used.

To be classified as being repackable
the app had to not crash for up to 60s
and not show a "hack detected," or a
"go to play store and re-download the

app" popup.

Process: Root detection

As Magisk is currently the main
Android rooting framework, the focus
was solely on it. A clean, rooted
Android device was used, with all
Magisk rooting artifacts removed.
Magisk app hiding was enabled, as
well as Zygisk and the enforcement
of the DenyList. The Magisk DenyList
is used to hide the presence of
Magisk from the apps in the list.
Before starting the test, the app and
all of its processes were added to the
DenylList.

Process: Hooking detection

For hooking, Frida was an obvious
choice, as it is the most popular
Android hooking/instrumentation
framework right now. LSPosed was
selected to complement Frida as it has
a different "attack" pattern, and by
testing with both, our tests could
better understand the whole hook
detection landscape.

- Frida

We tested Frida by running a Frida
server on the device, starting the app
with the Frida server attached, and
hooking libc functions that are used in
every app. The hook logged some
data every time it was triggered. The
logs were examined afterward for
those hook messages, and if any were
present and the app did not crash, the
hooking attempt was marked as
successful.

- LSPosed

For LSPosed hooking, an LSPosed
generic module was written that
hooked and logged some Java runtime
methods. LSPosed hooking was
enabled for the tested app, and the
app was run normally. Later, same as
with Frida, logs were analyzed for the
hook messages.

14

PROMON

About Promon

A comprehensive Application Shielding solution can help
reduce the risk of cheating, protect revenue, and defend
your brand and intellectual property. Promon SHIELD™
combines advanced obfuscation and robust runtime
protection to help protect apps and end-users from harm.
Get in touch at promon.co to learn more.

15

https://www.promon.co/

